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1. Work Summary

The AFRL Line-Imaging Optically Recording Velocity Interferometer System (ORVIS) 
is a custom designed and assembled velocity interferometer for measurement of spatially 
resolved wave profiles (along a line segment) generated in impact studies at the AWEF 
gun facility at Eglin AFB. This work was performed in fulfillment of Reynolds Systems 
Inc. Purchase Order No. 5-8918 (Eglin AFB Contract F1TBAX2194BG03, FA8651-11-
D-0109, TO0007 line VISAR with RSI). The work was performed in several phases. In 
January 2013, Interferometry Consultant (IC) met with AFRL personnel on-site at Eglin 
AFB to discuss experimental needs and to define the basic layout of the Line-ORVIS 
system. At this time, it was decided to utilize an optical table already available at the 
facility and to design the instrumentation to fit the 72” x 59” area of this platform. Over 
the next several months, IC (with ongoing consultation with AFRL personnel by e-mail) 
developed a detailed design for the interferometer and its coupling to the gun target 
chamber at the AWEF facility. The required discrete optical and optical mounting 
components were identified and ordered from commercial suppliers. An acousto-optic 
modulator system and motorized actuators were also ordered for this system. (A detailed 
list of the ordered material is available upon request.) The system utilizes a streak 
camera/intensifier/CCD camera system that had been previously acquired by AFRL.  A 
more detailed description of the various elements in the interferometer design is given 
below. After delivery of nearly all of the components to Eglin, IC made a second on-site 
visit in May 2013 to assemble (with the aid of AFRL personnel) the interferometer and 
the coupling set up to the gun target chamber. Initial training in the use of the 
accompanying data reduction software (available from Sandia National Laboratories) 
also took place at this time.  A third visit was made in July 2013 to complete the set up, 
provide training on its operation, assist in coupling the interferometer signal to the streak 
camera detector, and oversee the implementation of this diagnostic on a gun test. A 
successful test of the interferometer was performed on July 11, 2013. The work 
performed off-site and on-site fulfills the tasks outlined in the statement of work 
submitted for this contract.   

2. System Description

The AFRL system is essentially a very-long-working-distance projection microscope 
coupled to an ORVIS-style interferometer. The important elements of the optical design 
are shown schematically in Figure 1. This illustration portrays the approximate geometry 
of the layout but it is not drawn strictly to scale. 

Coherent, continuous-wave (cw) light from the user-supplied Verdi Nd:YVO4 laser is 
coupled to an acousto-optic modulator that is driven by a RF modulator driver, generating 
a first-order beam that is deflected at a small angle to the transmitted zero-order beam. 
The first-order beam can be gated on and off as desired through  
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Figure 1. Schematic diagram of AFRL Line-Imaging ORVIS 

application of voltage pulses to the system from a user-supplied signal/delay generator. In 
this manner, either a single light pulse (~1 ms duration or less) or multiple pulses at a 
frequency dictated by the user can be supplied to the interferometer system. The single-
pulse mode can be externally triggered by the gun system target pins and is useful for 
minimizing the amount of light resident on both the target and the diagnostic 
instrumentation while the gun is being charged and fired. The multiple pulse mode 
provides a flexible and convenient method for adjusting the light intensity needed for set 
up and alignment while allowing the laser to operate at the appropriate power levels for 
best performance. 
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A small aperture (beam separator) is used to separate the first-order beam from the zero-
order and any higher-order beams. Three turning mirrors are used to direct this beam 
along a defined path to the input periscope at an approximate elevation of 8” above the 
optical table surface.  These mirrors are high reflectors that are coated for the vertical 
laser polarization and are suitable for high-power operation. Iris diaphragms (not shown 
in Figure 1) mounted on two optical rails are used to align to the desired laser path. 
Alignment is initially achieved along the first optical rail and the beam is then directed by 
the third turning mirror along the path above the second rail that is mounted at a 90o 
angle to the first. A useful method for alignment along the first rail is to adjust the first 
two turning mirrors iteratively to direct the beam through two irises. This is typically 
done using visual inspection to roughly center the beam on the iris apertures and then the 
process is refined by placing a slightly roughened piece of mylar (or similar material) 
ahead of the diaphragm and viewing the combination specular/diffuse spot behind the 
diaphragm. This technique yields a more precise alignment of iris aperture and light beam 
than can be achieved through simple visual inspection alone.  
 
Once alignment is achieved along the first optical rail, the third turning mirror can be 
used to direct the beam along the desired path above the second rail through iterative 
adjustments of x/y translation relative to the optical table and the tip/tilt drives in the 
optical mount. Once proper beam alignment along the two rails is achieved, the various 
lens elements comprising the line-shaping optics can be carefully aligned to this beam 
path, as shown schematically in Figure 1. Chronologically, the placement of the line-
shaping optics is one of the last steps in setting up for a shot and this process is described 
in more detail later. Note that the design of the very long initial path defined by the two 
optical rails (and associated optics) was driven in large part by the very long distance 
involved in coupling to the gun target. In particular, this situation requires a large 
separation between the first and last elements of the line-shaping optics assembly. 
 
The assembly for raising the beam to the ~56” height of the gun barrel/target centerline is 
located at one corner of the optical table and the table itself is located as close as 
reasonably practical to the optical port on the gun target chamber. The intent of this 
design was to minimize the area in which the beam (as well as associated reflections from 
the target) propagates near eye level. Two additional high reflectors are used in the input 
periscope. In aligning these optics, considerable care needs to be taken to ensure that the 
turning angles are as close to 90o as possible. The beam is then routed into the target 
chamber by reflection off of a 4”-diameter 50/50 beamsplitter. Once again, it is important 
to achieve a turning angle very near 90o. Proper handling of stray beams in this area is 
very important. This includes the portion of the beam transmitted by the beamsplitter as 
well as the back reflection from the nearby optical port on the gun target chamber.  
 
Once inside the target chamber, the beam is directed by a user-supplied, “throwaway” 
first-surface mirror to the desired position on the gun target. Light reflected from the 
target is routed back out of the target chamber using the same first-surface mirror. To the 
extent possible, maintenance of 90o turning angles and beam propagation parallel to the 
floor is desirable. The reflected light passes through the 50/50 beamsplitter and is 
collected and roughly collimated by the lens labeled L1 in Figure 1. For various reasons 
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(including application of simple lens formulas to the optical design), it is helpful to have 
the focal length of this lens roughly match the distance to the target. IC was able to obtain 
a 128-mm-diameter, 1920-mm focal length lens that is fairly well matched to the ~2.2-
meter distance to the target. In its current mounting in a 4”-diameter tip/tilt mount, the f/# 
of the collection optics is fairly high which places a premium on target design that 
optimizes the geometry of the reflected light. This issue is discussed in more detail 
below. 
 
The collected light from the target is brought down to the desired 8” height above the 
optical table by the collection periscope. This assembly includes two 3”-diameter high 
reflectors. It is again important to achieve turning angles near 90o. Poorly controlled 
alignment at this stage can result in a target image at the streak camera that is 
significantly “tilted.” The reflected light is then either routed by a 3”-diameter turning 
mirror to the interferometer assembly or along an extended path that can incorporate 
additional relay lenses. The latter setup provides additional flexibility in adjusting the 
image magnification at the streak camera. As the light approaches the interferometer, it is 
important to ensure that stray reflections (e.g., from back reflection at the optical port or a 
target interferometer window) are effectively blocked so that only light from the interface 
of interest is passed into the system (to the extent possible).  
 
The reflected light is then aligned along the interferometer axis using either the turning 
mirror downstream of the collection periscope or a turning mirror placed at the end of the 
extended collection path in combination with the turning mirror at the front end of the 
optical rail containing the interferometer optics. The alignment procedure is similar to 
that used in the input leg; the two turning mirrors are adjusted iteratively to align the 
beam to iris diaphragms mounted along the optical rail. Before the interferometer 
beamsplitter (see below) is installed or repositioned, one iris can be adjusted to the 
correct height and the optical path down the rail can be established by moving the iris 
forward and backward on the rail and iteratively adjusting the two turning mirrors. After 
the beamsplitter is in place, the second iris can be positioned downstream of the 
beamsplitter and aligned to the established optical path. In this manner, the small 
horizontal offset arising from refraction in the beamsplitter can be accounted for. The 
light spot is reduced in diameter by the down-collimating telescope optics (L2, L3). A 
50/50 beamsplitter splits the beam into two equal-intensity components, one of which 
serves as a reference leg. A 4”-diameter optic coated for 50/50 reflection at an incident 
angle of 10o is used for this purpose. Typically, the reflectance coating is positioned to be 
on the front (or input) side of the beamsplitter. The reference leg reflects off mirror M1 
and is passed through the beamsplitter on its way to the recombination plane at the slit of 
streak camera. The second leg (initially transmitted by the beamsplitter) passes through a 
variable-length fused silica cylinder. This optical component imparts a time delay 
(proportional to the cylinder length) in the second beam. Mirror M2 then reflects this 
beam back through the cylinder to the front surface of the beamsplitter at an angle such 
that it overlaps the reference leg at the recombination plane. Mirrors M1 and M2 are high 
reflectors coated for maximum reflection at an incident angle near 0o. Mirror M2 is then 
tilted at an additional small angle in order to produce a straight-line interference pattern at 
the recombination plane. To maintain good beam overlap at the recombination plane, it is 
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also necessary to translate M2 a small distance along the interferometer axis. (Many 
additional helpful details pertaining to the basic ORVIS interferometer design and 
characteristics can be found in the original reports by Bloomquist and Sheffield.*) The 
rotation and translation of M2 to produce the optimal fringe pattern are precision 
adjustments that are aided by a motorized translator and a motorized mirror mount that 
enables extremely fine tip/tilt motions. A spreadsheet that correlates the necessary 
translation distance to the desired fringe density at the streak camera slit is supplied along 
with the data reduction software. Further information regarding the interferometer 
settings is given below. 
 
Typically, the interferometer recombination plane is set to correspond to the position of 
the slit of the recording streak camera. However, it is also possible and sometimes 
convenient to establish an intermediate recombination plane and use relay optics to re-
image the recombination plane to the streak camera slit. The streak camera is aligned so 
that the center of the slit lies perpendicular to the optical axis of the interferometer. The 
key adjustments here are the streak camera height (the slit should be positioned at the 
established height of the optical path), horizontal translation (so that the optical path falls 
on the center of the slit), and the tilt of the streak camera body. Correct tilt can be 
established by placing a first-surface mirror on the front surface of the camera and then 
adjusting the camera position so that the light from the interferometer is reflected back 
upon itself. Adjustment of the tilt, translation and height of the camera can be done 
iteratively until the correct alignment is achieved while also monitoring the camera level 
at the top surface.  
 
*D. D. Bloomquist and S. A. Sheffield, J. Appl. Phys. 54, 1717 (1983); D. D. Bloomquist 
and S. A. Sheffield, “ORVIS, Optically Recording Velocity Interferometer System, 
Theory of Operation and Data Reduction Techniques,” Sandia Report, SAND82-2918, 
February 1983. 

3. Safety Considerations 
 
Since the AFRL Line-Imaging ORVIS is an imaging interferometer, it incorporates 
by design and necessity an open-beam laser system. As such, it must be considered a 
hazard to both eyes and skin if the laser energy is improperly controlled and must 
be operated with the extreme care appropriate to open-beam laser operation. 
 
To mitigate the hazards associated with the operation, IC highly recommends the 
following: 

• Reference to and operation consistent with ANSI Z136.1 (2007)—American 
National Standard for Safe Use of Lasers. 

• A thorough review of the optical setup by the facility/site laser safety program. 
• Continued use of the laser enclosure panels available for this operation. 
• Continued utilization of engineering controls as the primary means to achieve 

control on the laser energy to the extent possible. 
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• Availability and use of laser eyewear appropriate to Maximum Permissible 
Exposure values and the specific tasks at hand. 

• A thorough examination of the system for stray laser reflections and placement of 
suitable beam blocks to prevent eye exposure to these reflections. Note: This 
should be repeated after any significant change in the optical configuration. 

• Operation of the laser/AO modulator at the least possible power setting to 
complete the alignment and setup. 

 
IC also recommends the following: 

• Provide physical enclosures for the open beam where it is practical. 
• Use remote viewing of the beam where it is practical—this should be especially 

considered at the target surface and at the slit of the streak camera. 
• When using a mylar diffuser for alignment, the piece should be firmly mounted so 

that the mylar surface remains perpendicular to the optical table surface. This is to 
prevent strong reflections from the mylar surface leaving the plane of the optical 
alignment. 

 
 

4. General Guidelines for Interferometer Operation 
 

4.1. Alignment 
 
Best performance is achieved by establishing and adhering to a defined optical path to and from 
the experimental target. Remove all lenses (line-shaping optics, relay lenses, L1, L2, and L3) 
from the optical path and align (using the iterative procedure described earlier) the “raw” laser 
beam to the beamsplitter just ahead of the optical port on the gun target chamber. Position and 
align this beamsplitter and the “throwaway” first-surface mirror inside the chamber so that the 
beam falls normal to the target at the desired position and can be reflected back along the 
incoming optical path. If the target is specular or generates a specular component that is 
coincident with the centroid of the diffuse reflectance, use this specular reflection to align along 
the optical axis of the interferometer. Utilize the turning mirrors ahead of the interferometer to 
perform this alignment. If the extended path containing relay optics is used, align along this path 
using the additional turning mirrors installed. 
 
If the reflected light from the target is totally diffuse, align the centroid of the reflectance along 
the path to the interferometer as best as can be determined and install L1. Translate this lens 
vertically and horizontally perpendicular to the optical path so that the diffuse spot transmitted 
by this lens is centered on the first alignment iris and proceed with the alignment along the 
interferometer rail using the turning mirrors. In any case (specular, partially specular, or diffuse 
reflectance), the axis of the optical path should end up well-centered on the streak camera slit. 
Typically, it is helpful to block the light proceeding through the delay leg at this point, especially 
if significant adjustments are to be made to the delay bar length along with corresponding 
adjustments to the translation/rotation of M2.  
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After the optical path is established all the way through the interferometer, the relay lenses (if 
used) and lenses L2 and L3 can be placed sequentially into the system. Using the irises and the 
center of the streak camera slit as alignment guides, translate the lenses in the plane 
perpendicular to the optical path so that the optical axis is well-centered in each lens. Note that 
the tilt of each lens in the system is important as well. 
 

4.2. Tilt Adjustment of Lenses 
 
This alignment procedure is best done with a well-defined specular spot from a mirror 
target. Adjust the tilt of the lenses sequentially; e.g., L1 then L2 then L3. For each lens, 
use a white card with a small hole upstream of the lens and align the hole to the incoming 
light. Examine back reflections from the lens on the back surface of the card (the card 
may need to be positioned at different distances to the lens in order to resolve the 
different  back reflected spots). Ensure that the back reflections are not coming from any 
optic downstream of the lens by blocking the light as needed. With a typical achromat 
lens, one should observe two or three spots arising from different lens surfaces. 
Occasionally, a “bull’s eye” interference pattern can be detected as well. Use the tilt and 
pan adjustments on the lens mount to center the spot pattern (and/or the “bull’s eye”) on 
the incoming beam (see Figure 2). If the lens is not exactly centered on the optical axis 
translationally, the spots  
 

 
 

Figure 2. Typical Pattern of Back Reflections from a Spherical Lens  
 

will appear separated either horizontally or vertically. Translate the lens so that the spots 
converge on the hole in the card. The spot transmitted by each lens should then be 
centered on the downstream irises as well. It is usually not necessary to perform a 
rigorous tilt adjustment of the lenses prior to every experiment. However, this adjustment 
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should be checked periodically, especially if significant changes are made to the optical 
configuration (e.g., replacement of lenses). 
 

Once all collection lenses have been placed into the system, the lenses can be translated along 
the optical rails in order to focus the target image onto the recombination plane. L1 is usually 
fixed along the axis unless there are major changes in the position of the target. L2 and L3 
should provide the necessary adjustments to generate the desired image. Often, once the optical 
path and lens focal lengths are established, only small adjustments to the position of L3 are 
needed to bring the image into good focus. 
 
In most cases, it is useful to complete the alignment of the interferometer and adjust M2 to obtain 
best fringe contrast at this point since it is generally easier to align with the target image 
illuminated by a spot rather than a line. The ORVIS VPF spreadsheet should be consulted to 
obtain the desired delay bar length, fringe density, and the corresponding translation distance for 
M2. (An initial alignment with only the beamsplitter is place was performed to establish the 
“zero” translation position of M2 for the spreadsheet calculations. If the beamsplitter is 
repositioned for any reason, this initial alignment should be repeated. 

 

4.3. “Re-zeroing” the M2 Translator Position 
 
Mount and align to a relatively diffuse target in the usual manner. Activate the translator 
and move M2 to a forward “Home Position.” With no additional delay bars in place, 
measure the distance from the front surface of the beamsplitter to the reference mirror 
(M1) and manually position M2 to the same distance from the front surface of the 
beamsplitter. Search for fringes by rotating M2 and also making very small vertical 
adjustments needed to overlap the reference and delay images at the recombination plane. 
Once fringes with near optimal contrast are obtained, note the fringe density. Manually 
move M2 a few mm forward or backward on the rail and search for fringes again. 
Typically, if the fringe density is greater in this situation, it will be necessary to 
reposition M2 a few mm on the opposite side of the position used in your initial attempt. 
However, if the fringe density is less, keep moving M2 in the same direction as before. 
Repeat these small adjustments until you obtain a condition where the best fringe contrast 
is obtained for a “bull’s eye” fringe pattern. One should observe the fringe contrast fall 
off an equivalent amount when M2 is rotated to either side of the “bull’s eye.” Ensure 
that the M2 translator is positioned on the optical rail so that the “home position” falls a 
little forward of the point where the best contrast corresponds to the “bull’s eye.” This 
allows a digital translator reading near the “home position” to be associated with the 
position the “bull’s eye.” The translator can then be used to make small translations (0.1 
mm or so) to refine this “zero” position. Use the final measured position in the 
spreadsheet calculation. 
 

Install the delay bars as needed for the particular experiment. Activate the M2 translator and 
“home” the translator to obtain optimal accuracy for subsequent translation. Adjust the M2 
translator position to the value indicated in the spreadsheet calculations for the delay bar length 
and fringe density desired. Activate the motorized mirror mount and rotate/tilt M2 to overlap the 
reference and delay leg images. It is extremely helpful to view the target image and fringes with 
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a video camera that can produce a magnified image on a computer or stand-alone monitor. To 
the extent that the geometric measurements of the interferometer have been made accurately, the 
fringe density at best contrast should closely correspond to the value entered in the spreadsheet. 
(The necessary geometric measurements for the spreadsheet were performed at the time of 
installation; however, these values should be re-measured if there any changes in the position of 
the beamsplitter or reference mirror, M1.) 
 

4.4. Necessary Geometric Measurements for the ORVIS Interferometer 
 
In order to confirm or the repeat the measurements used in setting up the interferometer, 
mount a specular target and align the reflected specular spot down the interferometer 
optical rail in the usual manner. Refer to the original reports by Bloomquist and Sheffield 
for the definition of the required quantities: d, d’, d”, , and AC. If comple   
these measurements, rotate the beamsplitter to set it normal to the incoming beam. 
Perform the necessary tip/tilt adjustments on the beamsplitter mount to reflect the 
incoming beam back on itself. Set the beamsplitter rotation to the approximate angle 
desired and measure this rotation angle, , by performing the measurement illustrated in 
Figure 3. Along a line perpendicular to the optical axis of the interferometer, measure d1 
(the distance to the front surface of the beamsplitter) and d2 (the distance from the 
interferometer optical axis to the reflected spot along the perpendicular line). Simple 
trigonometry can be used to evaluate 2  from this measur      
and AC can be measured as indicated in the Bloomquist and Sheffield reports. 
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Figure 3. Right Angle Measurement of Beamsplitter Rotation Angle  

 
Once the desired fringe density and best contrast are obtained, the line-shaping optics can be 
installed to generate the line illumination to be viewed by the streak camera. For this step, it is 
very helpful to install a video camera to view the illumination pattern on the target itself and to 
convey a magnified image of this illumination to the interferometer table where it can be viewed 
as adjustments to the optics are made. Typically four lenses (one spherical and three cylindrical) 
are used to generate the line illumination. The 1st lens (nearest the laser source) is a plano-convex 
spherical lens that focuses the laser beam to a point at a distance downstream of the lens 
approximately equal to its focal length. The 4th lens (furthest from the laser source) is a 
cylindrical lens that is used to relay this focused spot to the target in the vertical dimension. To 
accomplish this, the 4th lens is rotated to the proper orientation and the line-shaping lens 
assembly is set so that this lens is located approximately twice its focal length from both the 
target and the focal spot of the spherical lens. (Using simple lens formulas, it should be possible 
to achieve a strict 1:1 magnification; however, in practice, the true magnification often varies 
from this value somewhat.) The relatively long distance from the 4th lens to the target (>2 
meters) dictates that the complete line-shaping optics assembly also occupies a similar distance. 
This is accomplished by the folded path illustrated in Figure 1. The 2nd and 3rd lenses in the 
assembly are cylindrical lenses oriented to focus the light in the orthogonal (horizontal) 
dimension. The 2nd lens is a short focal-length optic that is used to overcome the divergence of 
the 1st lens in this dimension. The 3rd lens (a longer focal-length optic) acts to roughly collimate 
the light in this dimension. These two lenses can be moved roughly in tandem to vary the length 
of the line segment at the target.  
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When installing the line-shaping optics, it is helpful to position these lenses sequentially into the 
system, checking the tilt and translating each lens in a manner similar to that used for the lenses 
L1-L3. Note that the back reflections from the cylindrical lenses are not simple spots but the 
principle of converging the reflections with the position of the incoming beam remains the same. 
It is very helpful to also view and center the light transmitted by these lenses on the downstream 
irises.  
 
Once the lens translations and tilts are established, the optics can be moved forward and 
backward on the optical rails to achieve the optimal focus on the target. If the target image has 
been accurately focused onto the streak camera previously, the line illumination reaching the 
streak camera slit should also be narrow. Small translations of the 3rd and 4th lenses may be 
needed to align the line segment precisely to the slit. Check the fringe contrast again at this point. 
Now the fringe definition can be checked using the display of the streak camera/CCD system. 
Small changes to the rotation and tilt of M2 may be needed to sharpen the observed fringe 
contrast. 
 
Two further points must be emphasized. First, it is vital that the overlap of the reference and 
delay legs to achieve best contrast be accomplished using a diffuse surface, even if the intended 
target surface is specular or partially specular. (It is very easy to obtain clear fringes with a 
specular surface even if the reference and delay legs are poorly overlapped.) Since the target 
imaging and interferometer optics are essentially independent, it is not necessary to access the 
actual target surface for this purpose; i.e., a diffusely reflecting surface (e.g., aluminum foil or a 
white card) can be placed on the surface or on an interferometer window in contact with the 
surface. Utilize this diffuse surface for alignment. The region where the fringes are visible and in 
decent contrast should be fairly narrow with the contrast falling off rapidly as M2 is rotated to 
one side or the other. Second, it is vital that the light reaching the streak camera slit be restricted 
to reflected light from the intended surface only. Especially when an interferometer window is 
used in the target assembly, the light from the intended surface may be “contaminated” with one 
or more specular reflections. (Another source of specular reflection may be the optical port on 
the gun target chamber tank.) A concerted effort should be made to block the unwanted 
reflections. Specular reflection from the target area will typically come to a tight focus at a 
location between L1 and L2 while the diffuse reflectance remains an extended spot. If possible, 
use a small object (e.g., popsicle stick, Q-tip, needle, etc.) to intercept the specular reflection(s) 
at this point. Only a small fraction of the desired diffuse reflectance will be thrown away by this 
action. Ensure that the blocking tool does not excessively vignette or shadow the image at the 
streak camera slit. Also, be sure to check this blocking arrangement after the line-shaping optics 
are installed since the pattern of specular and diffuse reflectance will change somewhat when 
these optics are introduced into the system. 

5. Target Surface Preparation 
 
The line-imaging ORVIS can be used with a wide variety of target surfaces. Specular surfaces 
can provide good return light for some experiments in which the interface of interest remains 
largely specular under impact loading. Experiments with homogeneous materials and/or ramp 
loading conditions can produce this result (e.g., symmetric impact loading of fused silica). In 
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many cases, however, surfaces become relatively diffuse upon shock loading. Light reflected 
from such targets can become distributed over a large solid angle, possibly resulting in a 
dramatic overall loss of intensity as the shock arrives. While results under dynamic loading can 
vary greatly, it is often helpful to begin with a surface finish that produces a reflection pattern 
that is diffuse but is also concentrated in a cone angle that is largely accepted by the high f/# of 
the L1 lens (see Figure 4). 
 

 
 

Figure 4. Illustration of Desirable Pattern of Diffuse Reflectance from Target Surface. (The 
actual path is folded.) 

 
With this configuration, the loss of light intensity upon shock arrival is typically much less that 
that experienced with a specular surface. An even more diffuse reflector can, of course, be used; 
however,  this may result in unacceptably low overall light intensity for recording the event. 
Given the wide variety of possible samples (from homogenous to very coarse heterogeneous) 
and surface finishes, it is impossible to give comprehensive recommendations for surface 
treatment. Good results have been obtained by polishing the surface to different surface finishes 
(or by “roughing up” a specular surface and then polishing back) or by micro-peening the surface 
with bead blasting techniques. Samples with relatively large particle sizes present significant 
challenges as well, often requiring a buffer material to smooth out the highly structured waves 
produced in these samples. The experimenter may expect to engage in significant “trial and 
error” efforts to optimize the reflecting surface for certain applications.  
 
An additional complication arises from the fact that the line-imaging ORVIS is effectively a 
projection microscope (using monochromatic light illumination) that can produce highly 
magnified images at the streak camera. Fringes produced by the interferometer modulate the 
light pattern that is seen in this image. With perfectly homogeneous illumination and reflection, 
the fringes should correspond to a smooth sinusoidal pattern. In practice, however, surface 
imperfections (tiny scratches, pits, etc.) produce an underlying more or less random pattern of 
light and dark regions on which the fringes are superimposed. Hence, as methods are developed 
for generating a suitable reflected cone angle (as shown in Figure 4), attention must also be given 
to what effect this surface treatment has on the surface finish microstructure in order to produce 
as homogeneous an image as possible. 
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6. Image Acquisition 
 
In addition to acquiring the data image (the fringe record generated in the experiment), it may be 
helpful to take several other images that can be useful in pre-processing the data before the 
supplied data analysis software is used. A background or dark field image should be acquired 
with the laser shutter closed and with the streak camera/CCD system operated at the same 
intensifier gain setting as that used for the data image. Subtract the background image from the 
data image in order to account for the thermal noise in the data record. If the data image is of 
very low intensity, it may be helpful to average several background images to obtain a less noisy 
record for the subtraction. It is sometimes helpful to record an image with the delay leg blocked 
(a “reference” image) in order to observe the underlying spatial variation in the light intensity 
from the target. In principle, the data image can be normalized by this record but results of this 
operation can be mixed. In particular, very noisy normalized records can result if the reflected 
light intensity is low over some regions of the image. It is often helpful to record an image of the 
static fringes before the data is acquired (a “baseline” image). In some cases, this image can be 
used to compensate for small amounts of image rotation or warping. The supplied data reduction 
software is configured to perform the subtraction of the baseline record from the data. This 
subtraction is particularly successful if the shot-to-shot performance of the streak camera is 
essentially constant. In principle, a flat-field image (acquired with constant illumination across 
the slit) would be useful in the analysis as well. This type of image can be used to account for 
differences in the pixel response of the detector system. However, this record is difficult to 
obtain in practice. Pulsed laser illumination using an integrating sphere in close proximity to the 
slit might be a useful approach in this regard. 
 
Other image pre-processing steps can be useful as well. Various types of image filters (e.g., 
median filters) can provide positive results in “cleaning up” the image. Various approaches to 
enhancing the dominant frequencies in the image (e.g., FFT filtering) can be very effective, 
especially in the case of low-intensity or noisy records. It is, of course, very important to avoid 
over-processing the images as this can produce unwelcome image artifacts. 

7. Common Problems and Likely Solutions 
 
Low-intensity Fringe Records 

• Operate the laser at higher power, if possible. 
• Verify that the laser is not being attenuated somewhere in the system. 
• Re-work the target surface, if possible, to obtain a better reflectivity and a more suitable 

cone of reflected light. 
• Operate the detector system at higher gain to the extent that it doesn’t compromise the 

dynamic range of the image. 
• Verify that the A/O modulator is coming on early enough relative to the streak sweep to 

provide a maximum intensity. 
• Verify that the first-order beam coming out of the A/O modulator has the expected 

power. Small changes in the modulator position, etc. can dramatically reduce the 
intensity transmitted. 
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Poor Fringe Contrast/Intensity Upon Shock Arrival 
• Use a diffuse surface for fringe location and optimization to ensure that the reference and 

delay legs are optimally overlapped. 
• Ensure that the overlap doesn’t drift with time (e.g., the precision rotator is activated 

when it is supposed to be idle) 
• Use a buffer material in the target assembly if you suspect that the emerging wave is 

highly structured. 
 
Static Fringes Appearing in the Image After Shock Arrival 

• Re-work the target surface, if possible, to obtain a better reflectivity and a more suitable 
cone of reflected light from the intended surface. 

• Ensure that specular reflections from surfaces other than the intended surface are 
effectively blocked before entering the interferometer. 

 
Fringes Appear Curved at Region of Best Contrast  

• Re-work the beam alignment to ensure that the optical axis of the interferometer is 
parallel to the surface of the interferometer table. It can be helpful to set up a movable iris 
at the desired height and check the beam height at various positions around the table. 

 
Fringes Do Not Have the Same Contrast or Density as M2 is Moved to Either Side of the “Bull’s 
Eye” 

• Recheck the geometric measurements used in the ORVIS VPF spreadsheet. 
• Verify that the backoff distances (M2 translations) are correct. The precision translator 

can be in error if the proper counts/cm value is not entered into the menu. 
 
Poor Line Image at the Streak Camera Slit 

• Verify that an optimal line segment is being produced by the position of the line-shaping 
optics. 

• Verify that the interferometer is focused on the target surface. 
• Operate the laser at sufficiently low intensity or with the A/O in pulsed mode to avoid 

thermal blooming in intervening optics (e.g., this can definitely occur in Lexan windows 
under constant high-power illumination). 
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8. Appendix:  List of critical components 
 

 
 
 
 
 

 

Application Description Vendor Part# Qty
2" turning mirrors for line shaping and raising periscope Nd:YAG Laser Line Mirror, 532nm, 2", 45°  for S polarized CVI-Melles Griot Y2-2037-45S 5
3" turning mirrors for image routing after collection Nd:YAG Laser Line Mirror, 532nm, 3", 45°  for unpolarized CVI-Melles Griot Y2-3050-45UNP 6
beamsplitter at tank portal beamsplitter, 532nm, 50%, 4", 45° for unpolarized CVI-Melles Griot BS1-532-50-4050-45UNP-UV 1
interferometer beam splitter beamsplitter, 532nm, 50%, 4", 10° for unpolarized CVI-Melles Griot BS1-532-50-4050-10UNP-UV 1
interferometer mirrors M1 and M2 Nd:YAG Laser Line Mirror, 532nm, 2", 0° CVI-Melles Griot Y2-2037-0 2
1/2" etalons laser window, no wedge, 2"x0.500", 532 AR coated at 0° CVI-Melles Griot W2-PW1-2050-UVOAA-532-0 3
2" etalons laser window, no wedge, 2"x2", 532 AR coated at 0° CVI-Melles Griot W2-PW1-50.8MMX50.8MM-UVOAA-532-0 3
line shaping optic #1 plano-convex spherical lens, 2" dia, 200mm f.l., AR coated Thorlabs LA1979-A 1
line shaping optic #2 mounted plano-convex cyl lens, 1" dia, 50mm f.l., AR coated Thorlabs LJ1695RM-A 1
line shaping optic #3 mounted plano-convex cyl lens, 1" dia, 300mm f.l., AR coated Thorlabs LJ1558RM-A 1
line shaping optic #4 1000mm f.l. lens? Thorlabs LJ1516RM-A 1
collecting lens L1 large 1900mm focal length lens Edmunds Optics 54-569 1
collecting lens L2 250 mm focal length lens Newport PAC095
collecting lens L3 100 mm focal lenth lens Thorlabs AC254-100-A
relay optics 750mm focal length lens Newport PAC097 2
piezo tip stage for M2 New Focus (owned by Newport), 8742 controller, 8852 picomotor  Newport
linear translator for M2 MC-5B controller, MM-4M-EX-140 GR66 stage, National Aperture
translation rails rails and carriers that optics are mounted on OptoSigma
AOM AFM-404A20 AOM unit and model ME driver Intra Action
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